3.220 \(\int (a-a \sec ^2(c+d x))^{7/2} \, dx\)

Optimal. Leaf size=134 \[ -\frac{a^3 \tan ^5(c+d x) \sqrt{-a \tan ^2(c+d x)}}{6 d}+\frac{a^3 \tan ^3(c+d x) \sqrt{-a \tan ^2(c+d x)}}{4 d}-\frac{a^3 \tan (c+d x) \sqrt{-a \tan ^2(c+d x)}}{2 d}-\frac{a^3 \cot (c+d x) \sqrt{-a \tan ^2(c+d x)} \log (\cos (c+d x))}{d} \]

[Out]

-((a^3*Cot[c + d*x]*Log[Cos[c + d*x]]*Sqrt[-(a*Tan[c + d*x]^2)])/d) - (a^3*Tan[c + d*x]*Sqrt[-(a*Tan[c + d*x]^
2)])/(2*d) + (a^3*Tan[c + d*x]^3*Sqrt[-(a*Tan[c + d*x]^2)])/(4*d) - (a^3*Tan[c + d*x]^5*Sqrt[-(a*Tan[c + d*x]^
2)])/(6*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0623407, antiderivative size = 134, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.235, Rules used = {4121, 3658, 3473, 3475} \[ -\frac{a^3 \tan ^5(c+d x) \sqrt{-a \tan ^2(c+d x)}}{6 d}+\frac{a^3 \tan ^3(c+d x) \sqrt{-a \tan ^2(c+d x)}}{4 d}-\frac{a^3 \tan (c+d x) \sqrt{-a \tan ^2(c+d x)}}{2 d}-\frac{a^3 \cot (c+d x) \sqrt{-a \tan ^2(c+d x)} \log (\cos (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a - a*Sec[c + d*x]^2)^(7/2),x]

[Out]

-((a^3*Cot[c + d*x]*Log[Cos[c + d*x]]*Sqrt[-(a*Tan[c + d*x]^2)])/d) - (a^3*Tan[c + d*x]*Sqrt[-(a*Tan[c + d*x]^
2)])/(2*d) + (a^3*Tan[c + d*x]^3*Sqrt[-(a*Tan[c + d*x]^2)])/(4*d) - (a^3*Tan[c + d*x]^5*Sqrt[-(a*Tan[c + d*x]^
2)])/(6*d)

Rule 4121

Int[(u_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(b*tan[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]

Rule 3658

Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Di
st[((b*ff^n)^IntPart[p]*(b*Tan[e + f*x]^n)^FracPart[p])/(Tan[e + f*x]/ff)^(n*FracPart[p]), Int[ActivateTrig[u]
*(Tan[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1] |
| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig
]])

Rule 3473

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(b*Tan[c + d*x])^(n - 1))/(d*(n - 1)), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \left (a-a \sec ^2(c+d x)\right )^{7/2} \, dx &=\int \left (-a \tan ^2(c+d x)\right )^{7/2} \, dx\\ &=-\left (\left (a^3 \cot (c+d x) \sqrt{-a \tan ^2(c+d x)}\right ) \int \tan ^7(c+d x) \, dx\right )\\ &=-\frac{a^3 \tan ^5(c+d x) \sqrt{-a \tan ^2(c+d x)}}{6 d}+\left (a^3 \cot (c+d x) \sqrt{-a \tan ^2(c+d x)}\right ) \int \tan ^5(c+d x) \, dx\\ &=\frac{a^3 \tan ^3(c+d x) \sqrt{-a \tan ^2(c+d x)}}{4 d}-\frac{a^3 \tan ^5(c+d x) \sqrt{-a \tan ^2(c+d x)}}{6 d}-\left (a^3 \cot (c+d x) \sqrt{-a \tan ^2(c+d x)}\right ) \int \tan ^3(c+d x) \, dx\\ &=-\frac{a^3 \tan (c+d x) \sqrt{-a \tan ^2(c+d x)}}{2 d}+\frac{a^3 \tan ^3(c+d x) \sqrt{-a \tan ^2(c+d x)}}{4 d}-\frac{a^3 \tan ^5(c+d x) \sqrt{-a \tan ^2(c+d x)}}{6 d}+\left (a^3 \cot (c+d x) \sqrt{-a \tan ^2(c+d x)}\right ) \int \tan (c+d x) \, dx\\ &=-\frac{a^3 \cot (c+d x) \log (\cos (c+d x)) \sqrt{-a \tan ^2(c+d x)}}{d}-\frac{a^3 \tan (c+d x) \sqrt{-a \tan ^2(c+d x)}}{2 d}+\frac{a^3 \tan ^3(c+d x) \sqrt{-a \tan ^2(c+d x)}}{4 d}-\frac{a^3 \tan ^5(c+d x) \sqrt{-a \tan ^2(c+d x)}}{6 d}\\ \end{align*}

Mathematica [A]  time = 2.20579, size = 70, normalized size = 0.52 \[ \frac{\cot ^7(c+d x) \left (-a \tan ^2(c+d x)\right )^{7/2} \left (2 \tan ^6(c+d x)-3 \tan ^4(c+d x)+6 \tan ^2(c+d x)+12 \log (\cos (c+d x))\right )}{12 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a - a*Sec[c + d*x]^2)^(7/2),x]

[Out]

(Cot[c + d*x]^7*(-(a*Tan[c + d*x]^2))^(7/2)*(12*Log[Cos[c + d*x]] + 6*Tan[c + d*x]^2 - 3*Tan[c + d*x]^4 + 2*Ta
n[c + d*x]^6))/(12*d)

________________________________________________________________________________________

Maple [A]  time = 0.337, size = 167, normalized size = 1.3 \begin{align*}{\frac{\cos \left ( dx+c \right ) }{12\,d \left ( \sin \left ( dx+c \right ) \right ) ^{7}} \left ( 12\, \left ( \cos \left ( dx+c \right ) \right ) ^{6}\ln \left ({\frac{1-\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) +12\, \left ( \cos \left ( dx+c \right ) \right ) ^{6}\ln \left ( -{\frac{-1+\cos \left ( dx+c \right ) +\sin \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) -12\, \left ( \cos \left ( dx+c \right ) \right ) ^{6}\ln \left ( 2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1} \right ) -11\, \left ( \cos \left ( dx+c \right ) \right ) ^{6}+18\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}-9\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+2 \right ) \left ( -{\frac{a \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{ \left ( \cos \left ( dx+c \right ) \right ) ^{2}}} \right ) ^{{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a-a*sec(d*x+c)^2)^(7/2),x)

[Out]

1/12/d*(12*cos(d*x+c)^6*ln((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))+12*cos(d*x+c)^6*ln(-(-1+cos(d*x+c)+sin(d*x+c)
)/sin(d*x+c))-12*cos(d*x+c)^6*ln(2/(cos(d*x+c)+1))-11*cos(d*x+c)^6+18*cos(d*x+c)^4-9*cos(d*x+c)^2+2)*cos(d*x+c
)*(-a*sin(d*x+c)^2/cos(d*x+c)^2)^(7/2)/sin(d*x+c)^7

________________________________________________________________________________________

Maxima [A]  time = 1.46337, size = 109, normalized size = 0.81 \begin{align*} -\frac{2 \, \sqrt{-a} a^{3} \tan \left (d x + c\right )^{6} - 3 \, \sqrt{-a} a^{3} \tan \left (d x + c\right )^{4} + 6 \, \sqrt{-a} a^{3} \tan \left (d x + c\right )^{2} - 6 \, \sqrt{-a} a^{3} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sec(d*x+c)^2)^(7/2),x, algorithm="maxima")

[Out]

-1/12*(2*sqrt(-a)*a^3*tan(d*x + c)^6 - 3*sqrt(-a)*a^3*tan(d*x + c)^4 + 6*sqrt(-a)*a^3*tan(d*x + c)^2 - 6*sqrt(
-a)*a^3*log(tan(d*x + c)^2 + 1))/d

________________________________________________________________________________________

Fricas [A]  time = 0.528424, size = 244, normalized size = 1.82 \begin{align*} -\frac{{\left (12 \, a^{3} \cos \left (d x + c\right )^{6} \log \left (-\cos \left (d x + c\right )\right ) + 18 \, a^{3} \cos \left (d x + c\right )^{4} - 9 \, a^{3} \cos \left (d x + c\right )^{2} + 2 \, a^{3}\right )} \sqrt{\frac{a \cos \left (d x + c\right )^{2} - a}{\cos \left (d x + c\right )^{2}}}}{12 \, d \cos \left (d x + c\right )^{5} \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sec(d*x+c)^2)^(7/2),x, algorithm="fricas")

[Out]

-1/12*(12*a^3*cos(d*x + c)^6*log(-cos(d*x + c)) + 18*a^3*cos(d*x + c)^4 - 9*a^3*cos(d*x + c)^2 + 2*a^3)*sqrt((
a*cos(d*x + c)^2 - a)/cos(d*x + c)^2)/(d*cos(d*x + c)^5*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sec(d*x+c)**2)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.70824, size = 293, normalized size = 2.19 \begin{align*} -\frac{6 \, \sqrt{-a} a^{3} \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \frac{1}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}} + 2\right ) - 6 \, \sqrt{-a} a^{3} \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \frac{1}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}} - 2\right ) + \frac{11 \,{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \frac{1}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}\right )}^{3} \sqrt{-a} a^{3} - 90 \,{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \frac{1}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}\right )}^{2} \sqrt{-a} a^{3} + 276 \,{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \frac{1}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}\right )} \sqrt{-a} a^{3} - 408 \, \sqrt{-a} a^{3}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \frac{1}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}} - 2\right )}^{3}}}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-a*sec(d*x+c)^2)^(7/2),x, algorithm="giac")

[Out]

-1/12*(6*sqrt(-a)*a^3*log(tan(1/2*d*x + 1/2*c)^2 + 1/tan(1/2*d*x + 1/2*c)^2 + 2) - 6*sqrt(-a)*a^3*log(tan(1/2*
d*x + 1/2*c)^2 + 1/tan(1/2*d*x + 1/2*c)^2 - 2) + (11*(tan(1/2*d*x + 1/2*c)^2 + 1/tan(1/2*d*x + 1/2*c)^2)^3*sqr
t(-a)*a^3 - 90*(tan(1/2*d*x + 1/2*c)^2 + 1/tan(1/2*d*x + 1/2*c)^2)^2*sqrt(-a)*a^3 + 276*(tan(1/2*d*x + 1/2*c)^
2 + 1/tan(1/2*d*x + 1/2*c)^2)*sqrt(-a)*a^3 - 408*sqrt(-a)*a^3)/(tan(1/2*d*x + 1/2*c)^2 + 1/tan(1/2*d*x + 1/2*c
)^2 - 2)^3)/d